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Abstract Developing and maintaining large software systems typically re-
quires that developers collaborate on many tasks. During such collaborations,
when multiple people work on the same chunk of code at the same time, they
communicate with each other and employ safeguards in various ways. Recent
studies have considered group co-development in OSS projects and found that
it is an essential part of many projects. However, those studies were limited
to groups of size two, i.e., pairs of developers.

Here we go further and characterize co-development in larger groups. We
develop an effective methodology for capturing distributed collaboration be-
yond groups of size two, based on synchronized commit activities among mul-
tiple developers, and apply it to data from 26 OSS projects from the Apache
Software Foundation. We find that distributed collaborations is prevalent, but
not as frequent as expected. We also find that while in distributed collabora-
tive groups, developers’ behavior is different than when programming alone,
e.g., high developer focus on specific code packages associates with lower team
participation, while packages with higher ownership get less attention from
groups than from individuals. Finally, we show that productivity effort dur-
ing co-development is more often lower for developers while they co-develop in
groups. To verify our results we use both quantitative and qualitative methods,
including a developer survey.

We conclude that these methods and results can be used to understand the
effects of the collaborative dynamic in OSS teams on the software engineering
process. Our code, along with our datasets and survey is available at
http://www.gharehyazie.com/supplementary/teamwork/
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1 Introduction

Teamwork’s advantages are enjoyed in many walks of life, by humans [14]
and other animals [66]. And those advantages become even more apparent in
the digital realm, where people don’t even have to be geographically near.
Teams can be pre-meditated and serve a concrete purpose, e.g., two people
carrying a couch up the stairs, or group of undergrads building Facebook;
then the outcome clearly benefits from the team’s existence. Not surprisingly,
team forming is taxing; those who team up incur costs related to the overhead
of finding partners and coordinating with them. The larger the teams the
higher this overhead [18,58]. In fact, managing large teams effectively is a top
reason for the invention of organizational structure, and the subject of much
managerial science research [13,50].

But in many occasions teams also grow organically, without much explicit
organization at any given growth step, thus reducing costs related to teaming
up [36]. Examples include ants and bees swarming, schools of fish changing
direction on a dime [19], and Open Source Software teams. In many ways,
developing Open Source Software (OSS) code depends on teamwork, as many
developers work toward the same goal [15]. Often teams in OSS form organ-
ically, as needed, though persistent organizational structures exist in some of
them. 1 Teaming up in OSS serves many purposes, including finishing tasks
which require many person-hours, and tasks which require varied expertise.
It is also often implicit. Large OSS are known to exhibit latent communities
which follow a hierarchical structure [7], organized around the socio-technical
activities of developers. But how prevalent are those implicit, self-organized
teams? Are they persistent? Do some people have higher preference for work-
ing collaboratively because of their work styles? And does working on a team
impart any beneficial effects on the team members in terms of efficacy?

Leveraging the availability of trace data from publicly available OSS pro-
jects, we have recently studied in 6 OSS projects the benefits of OSS developer
collaborations by tracing pairwise synchronous code development, i.e., when
two developers work on the same file around the same time [70]. In that setting,
we found that two-person teams exist and are strongly affecting developer
productivity. There, we left open the cases of synchronous code development
in sets of sizes 3 and more people, due to lacking the technology to discover
larger teams. The difficulty in scaling up the study from teams of size 2 to larger

1 Linus Torvalds runs the Linux project in a more centralized fashion, depending on his
lieutenants for decisions regarding which new code filters up to him.
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teams lies in the fact that it is non-trivial to implicate people in teamwork
when dealing with OSS projects. This is true for many obvious reasons such
as lack of central management and users having free will to work with or on
whatever strikes their fancy at any given moment. However, techniques arising
from self-organizational studies and research in task synchronization between
actors help in setting the frameworks for analyzing heterogeneous trace data
abundant in empirical software engineering.

Here, we are interested in how collaborative distributed development scales
beyond two people, to teams of three and more developers, when we opera-
tionalize it as synchronous distributed development. Our goal is to infer, or
trace, putative teams from the large-scale data traces of developers’ technical
activities in Apache Software Foundation (ASF) OSS projects. We chose ASF
for several reasons including ASF’s multiple active and popular projects, and
potential synergy with an already existing body of research [22, 67–72]. We
build on prior work on latent communities [7] and code development collab-
oration [70]. From the latter we take a definition of distributed collaboration
and extend it to larger groups, in a way which easily lends itself to use with
trace data of developer activities.

Like in our precursor work,we narrow down the definition of collaboration
so that we can practically detect them from trace longitudinal data of commits.
To consider a group of developers as having a collaboration, their technical ac-
tions, i.e., code contributions, should be able to affect those of others. Physical
and temporal proximity of code snippets being worked on by different devel-
opers increase the chance of merge conflicts thereby making it more likely for
one developer to affect the other’s contribution. We leverage this intuition to
identify putative distributed collaborative groups in this study.

We call a putative Collaborative Group (CoG) a set of developers who
can be identified via their code commits as working in close code proximity
and temporal proximity to each other.

We chose our temporal and code proximity to be one week and a package,
respectively. We will elaborate on these choices later in Section 4.3 extensively.
With these parameters, our practical definition of a CoG becomes: “A set of
developers working on the same set of packages within a time interval of 1 week
from each other.” From this point on, we interchangeably use collaboration,
collaborative development, and distributed collaborative development, to refer
to the above definition.

In the rest of the paper we describe how we used the above definition on
longitudinal trace data from 26 ASF OSS projects to do the following.

– We develop a robust method for tracing putative CoGs from trace OSS
data and use it to characterize distributed collaboration levels in 26 ASF
projects;
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– We show that developers in CoGs communicate and coordinate through
the developer mailing lists;

– We find that developers spend a significant amount of time collaborating
with other developers and that their contribution patterns differ during
these collaborations;

– We measure developers’ group collaboration levels, with respect to the
amount of time, number of commits, and lines of code contributed, and
find that not all people spend a significant amount of time collaborating
with others, but in most cases, when they do collaborate, they commit
more per unit time;

– We find that developers with higher focus on specific packages are also less
likely to collaborate, while packages with higher ownership, as expected,
are less likely the subject of distributed collaboration;

– We find that in terms of LOC added and deleted per commit, individual
effort decreases during collaboration for 17 projects, while code growth
decreases for 10 and increases for 2 projects, suggesting that while col-
laborating, developers arguably contend with problems of some increased
complexity; and

– We ran a survey of ASF developers which provides input to our modeling
assumptions, and anecdotal evidence for our results.

We describe the theory and our research questions in Section 2, followed by
related works in Section 3. The methodology, results, threats, and conclusions,
are in Sections 4, 5, 6, and 7, respectively.

2 Theory and Research Questions

Our first goal is to find putative CoGs and quantify their prevalence in our
sample of ASF OSS projects. We do that by developing an algorithm for rea-
sonably capturing the above definition of putative CoGs. In addition to their
counts, we also want to know how their prevalence stacks against a random
model of contributions. Since OSS projects also make publicly available some
communication records between developers, validation of theses putative CoGs
is plausible.

Research Question 1: How prevalent are putative CoGs, of size 3
and more? Do they occur more frequently than by chance? And is there
evidence in the trace data that they are not just quantitative artifacts but
real teams?

Having a way to count CoGs, we next turn to understanding programmer’s
participation in those groups, and if their preference for participation changes
over time. In other words, we want to understand how developers’ split their
contributions between periods of collaboration and solitary work. This would
show how prevalent co-development is from a personal perspective.
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Research Question 2: How frequently do developers work in groups?
Does preference for working in groups vs working solo change over time?

Next we turn to questions having to do with the effects of group work on
the developer performance and technical output. The amount of one’s focus on
a particular file vs. distributing their activities equally across multiple files is
an important contribution measure for developers. It can be quantified using a
developer’s contribution entropy. Code ownership which measures the entropy
of developer contributions to each file can be seen as a dual of developer
focus. It has been shown that focused developers are less likely to introduce
defects [55], and Windows binaries with higher ownership may include fewer
defects [6]. Is it, then, reasonable to think that while in a group, a developer’s
focus may decrease and thus result in higher defects and lower productivity?
So, in the next part we are interested to see how co-development correlates
with developer focus and file ownership.

Research Question 3: Does distributed collaborative development cor-
relate with developer focus? I.e., do more focused developers participate in
fewer CoGs?How about package ownership, do packages that are subject
of co-development display a particularly high or low code ownership?

And finally we wish to see how distributed collaboration associates with
individual productivity. Two straightforward metrics of productivity [70] are
the code effort and code growth per developer for each file, defined as 1. code
effort: LOC added plus LOC deleted per commit. 2. code growth: LOC added
minus LOC deleted per commit. The code effort per file describes the amount
of work performed on each file at each commit, while the code growth per
file explains how much the size of a file grows per commit. These metrics can
tell us whether developers are working more or less per file during distributed
collaborative development.

Research Question 4: Do developers experience a notable change in
effort or code growth during co-development? In particular, is there a
pattern to the change as suggested by the data, i.e., in the same direction,
over all projects and developers?

3 Related work

Most directly related to this paper is a recent study by Xuan and Filkov, in
which synchronous co-development was studied among pairs of developers in
6 OSS projects using trace data from commits and mailing list posts [70]. The
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co-development discovered was very strong, indicating that when collaborating
together on the same set of files, developers communicate more frequently and
add more lines of code than they delete. In this paper, we focus on all groups,
and not just those of size 2. We aim to build upon this work by extending to
groups of larger sizes and moving beyond files to packages as a notion of code
proximity, which will allow us to identify collaborations that were previously
undetected. This gives us a higher level view, where we will see groups which
potentially form towards completion of specific tasks, rather than a set of pair-
wise collaborations that are not connected to each other. We also expand our
study to a wider range of projects, allowing us to provide a more complete
insight on collaborative development.

Pinzger and Hall utilize a similar concept of code proximity to develop a
collaboration and communication visualization tool for Eclipse [53]. Their tool
helps identify collaborators on certain components, however, their approach is
less concerned with a concrete definition of collaboration, and rather leaves its
definition at the hands of the user through the tuning of the tool’s parameters.
Jermakovics et al. also use the notion of code proximity to identify the collab-
oration network in software projects [33]. Their approach however disregards
any notion of temporal proximity which can lead to identifying unrealistic
long-term collaborations. Caglayan et al. have also developed a community
detection based approach to identifying teams [10] but their approach makes
identified teams less suitable for the study of developers interactions. As men-
tioned, there are very few works on quantifying collaboration in OSS, most of
which we have discussed here. Still there is a certain lack of solid quantitative
methods to identify collaboration across OSS [65] which our work seeks to
address.

With respect to social organization, Bird et al. have shown that develop-
ers organize themselves into groups and communities based on their social
activities [7]. They have also shown that there is a socio-technical congruence
between the software artifact modularity, and its developers’ social groups.
Panichella et al. extended this study by studying how these groups evolve and
change over time [52]. Their study shows team structure is not stable and
evolves over time, with respect to cohesiveness of files teams work on. Both
of these studies are based on social networks extracted from the developer
mailing lists; our current study is complementary, in that we look at groups
arising from synchronous commit patterns. Robertsa et al. also used communi-
cation patterns and identified a strong group at the core of the Apache HTTP
project [57]. Damian et al. studied communication and coordination patterns
in an IBM team and found that task related social-network are ever-evolving
and different from their initial conception [17]. Kakimoto et al. use Social Net-
work Analysis to study the communication patterns in SourceForge projects
and find an intensification of communications among members with different
roles around the time of a release [34].
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Hertel et al. studied the motivations of developers for joining specific sub-
systems [31] through a survey of 141 Linux Kernel developers. They observe
that valence, instrumentality and self-efficacy are driving developers towards
increased participation, patch submission and time spent in the project. How-
ever beneficial teaming up might be, Mockus showed organizational volatility
increases the probability of software defects [44]. In terms of overhead in-
curred for teaming up, Adams et al. studied the Brooks’ law effect on OSS [1].
They find that coordination costs increase only in a specific phase of a project
and after that, it becomes “quasi-constant”. Nagappan et al. define a set of
metrics based on organizational structure and show that they are able to pre-
dict defect-proneness better than classic code metrics such as code churn [46].
While their metrics are certainly interesting, they are defined based on an es-
tablished well defined organizational structure, and many of the metrics are
not applicable to our implicit and non-hierarchical definition of CoGs.

Dabbish et al. interviewed a group of GitHub developers and found that
transparency in large development efforts support efficiency and collabora-
tion [16]. In a case-study, Herbsleb and Gringer [28] show that communication
is essential to code development and that distribution of activities can hinder
communication. Cataldo and Herbsleb [12] show that a gap between coordi-
nation requirements and actual coordination can increase software failures.
Luther et al. identified frequent communication and high activity of members
and leaders as a success factor in online collaborations, including OSS [39].
Nakakoji et al. describe OSS projects as participative system and hypothe-
size the that the change in participants’ perceived values in a project may
characterize the evolution of that project and its community [47].

A topic that is highly tangential to collaboration is code ownership. Rah-
man and Devanbu have studied the effect of code ownership in OSS [55] and
find that defects are more likely from contributions of a single developer. Bird
et al. studied proprietary software viz. Windows 7 and Vista [6]. Both stud-
ies above are in agreement and report that files or binaries with many minor
contributors are more likely to contain defects. Focault et al. attempted to
replicate the results by Bird et al. [6] in OSS, but their results was in con-
trast to the previous works’ findings [20]. However, the difference in their
methodology and corpora studied, makes the comparison of their results a lit-
tle controversial. Developer focus is another issue that can be seen as the dual
of code ownership. Posnett et al. show that these two measures can be unified
under a more generalized view [54]. We use those measures in this paper.

While, to our knowledge, there is no direct study of the correlation be-
tween group collaboration and performance and productivity in self-organized
teams, in the field of managerial science the concept of teamwork and its cor-
relation with performance has been touched on by Brooks [9], Kuipers and de
Witte [37], Moe et al. [45], and others. They find that improved cooperation
is needed to gain higher productivity, but team size does not figure linearly.
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They also show that increasing task delegation reduces defects in a team’s
product. These results are for centrally managed, well developed teams.

More broadly, our work can be contextualized into research on collaborative
Software Engineering, where the emphasis is on the mechanisms and outcomes
of collaboration [65]. Scacchi has produced an overview of empirical studies
of OSS projects, focusing on collaboration practices at individual, project and
cross-project level [61]. Prior work in this field has addressed various chal-
lenges, such as how to leverage others’ experience, and what an effective col-
laboration entails [42], including the tools and platforms for collaborating in
software development as enabling technologies [38]. Along those lines, Avritzer
and Paulish provide a comparison of common processes utilized in multi-site
software development [3].

Much work has been done on understanding and ameliorating the poten-
tial harmful effects of distance collaboration in the area of Global Software
Engineering where the development teams are geographically distributed [30].
Holmstrom et al. use a case study to identify and highlight the key challenges
in global software development, specially in regards to temporal, geographical
and socio-cultural distances [32]. Sarma et al. outlined the main challenges or-
ganizations face in achieving congruence [60]. Grechanik et al. study the short-
comings of outsourced quality assurance teams and argue that new approaches
are needed to overcome these issues [24]. Herbsleb et al. measure the costs of
cross-site development vs same-site work and find out that cross-site work
takes longer and requires more people to complete [29]. Al-Ani and Edwards
studied the communication patterns of a fortune 500 company and found that
the overhead for synchronous communication is unacceptably high [2]. They
also show that the patterns of communication evolve from the initial inception
to address the development needs. These findings in part motivated us to study
the patterns of communication and collaboration among OSS developers.

Interestingly, Takhteyev and Hilts look into the distribution of users in
the GitHub ecosystem and find a strong local bias in contribution and atten-
tion [63]. This suggests that the challenges of distributed development in many
OSS is less about geographical distance and more about remote contributions
and lack of physical presence. Nguyen et al. also showed that geographical
distribution did not play a significant role in coordination response times [49],
suggesting that coordination overheads are less about the distance and more
about the communication itself. Nakakoji et al. describe two different types
of communication in software development: coordination communication and
expertise communication [48]. They provide nine outlines for properly sup-
porting expertise communication in OSS projects. Redmiles et al. introduce
Continuous Coordination as a paradigm for coordination and communication
that addresses some of the issues faced in global software engineering [56].
Later, Sarma et al. evaluated the continuous coordination tools available and
their usefulness through an evaluation framework called DESMET [59]. Lastly,
Carmel [11] presents some of the successful practices and techniques to make
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Fig. 1. The process diagram of the data gathering, identification and verifica-
tion steps as described in the paper.

the best of distributed software development, while Herbsleb [27] outlines a
desired vision of global development and expresses the need for a systematic
understanding of the driving force of an effective coordination.

4 Methodology

Figure 1 provides an overview of the process of mining and parsing data,
extracting CoGs and multiple verification steps, as described below.

4.1 Mining Source Code Repositories

We mined the git source code repositories for 26 ASF projects; summary is
in Table 1. Data gathering on the mailing lists and the repositories was per-
formed at different times and the times shown in Table 1 represents the inter-
section of both of these datasets’ date range. All of the selected projects have
at least 5 developers and 2 years worth of commit history that is maintained
in their Git repository.
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Table 1. List of OSS projects used in this study. The end date in most of the
projects is the date that data collection was performed.

Projects Devs Start End Projects Devs Start End

abdera 13 2006-06 2011-12 ivy 9 2005-06 2012-01
activemq 28 2005-12 2012-01 log4j 18 2000-11 2012-01
ant 44 2000-01 2012-02 log4net 7 2004-01 2011-12
avro 12 2009-04 2011-12 log4php 9 2004-01 2012-01
axis2 c 24 2005-09 2010-02 lucene 41 2001-09 2011-01
camel 31 2007-03 2012-01 mahout 15 2008-01 2012-01
cassandra 13 2009-03 2011-12 nutch 16 2005-01 2012-01
cayenne 20 2002-03 2012-01 ode 17 2006-05 2011-12
cxf 45 2005-07 2012-01 openejb 38 2002-01 2012-01
derby 35 2004-08 2012-01 pluto 24 2003-09 2011-09
hadoop hdfs 25 2009-05 2011-06 solr 19 2006-01 2011-03
harmony 25 2005-09 2011-07 wicket 24 2004-09 2011-12
hive 18 2008-09 2012-01 xerces2 j 33 1999-11 2012-01

The git log command gives us a complete record of each commit, along
with its id, date, and committer. We then parse the output of git show for
each commit to compile a list of files that are changed with that commit, and
each entry contains the number of lines of code that has been added or deleted
during that change.

We made a choice to only use source code files in our analysis, and identified
them with the methodology of Geominne et al. [23]. Code is the main material
and substance of OSS and also the main focus of developers, thus we study
them as to extract collaborative development. Code files also make up the
roughly 90% of files in our dataset, so limiting our study to this subset will
not drastically change the number of identified CoGs, but it will improve their
quality. For example, there are files that are touched every time a developer
submits changes, e.g., “changes.txt”. These would produce large CoGs for very
extended durations, which is meaningless and skews our results and so they
must be removed.

4.2 Merging Aliases

Merging duplicate aliases is necessary for two reasons: 1. A person identified as
two or more people might be working on a single file using a number of his/her
aliases, and thus could be erroneously recognized as a group; 2. A person with
multiple ids might be working on two or more different files using different
aliases, and thus the attribution of focus will be wrong.

Due to the small number of developers in each project (in order of tens),
the merging process was done manually. All names and email IDs were checked
and those with similar name, or similar email or names that highly sug-
gest similarity were merged e.g., (John Smith, smith@gmail.com), (Smith,
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John@smith.com), (John S., J.smith@ucdavis.edu) are considered to be the
same person.

4.3 Extracting Groups

We make the precise definition of a putative CoG by designing an algorithm
which identifies sets of developers whose commits overlap in code and time.
It depends on both temporal proximity, ∆t, the maximum time separation
between two consecutive CoG commits, and code proximity, which captures
a level of modeling at which CoGs work. We reason about the appropriate
practical choices for these later, after we present the generic algorithm.

1. For each code proximity, we process in increasing temporal order the com-
mits therein, and derive a list of contribution sequences. Each sequence
corresponds to the contributions of a set of people to that code proximity.

2. A commit is added to a sequence if it lies within a ∆t time apart from the
last one already in the sequence. If no prior commit lies within ∆t of the
current one being processed, we start a new contribution sequence with it.

3. After all commits have been processed, we remove all final contribution
sequences solely comprised of commits by a single developer.

4. We also excise consecutive commits by the same person occurring at the
beginning or the end. The reason is that the head or tail sequences usually
represent a time of solitary development before new developers joined the
existing one and formed a group. For example, the sequence

F1 : P1,1, P1,5, P1,8, P2,8, P2,9, P1,10, P2,12, P2,13, P2,15

is reduced to:

F1 : P1,8, P2,8, P2,9, P1,10, P2,12.

Here Fi : . . . shows the sequence of changes made to code proximity i, and
Pj,k denotes changes made by person j at time k.

5. Since developers in the same CoG may be working on more than one code
proximity at the same time, e.g., they may have divided tasks among each
other, we merge contribution sequences of the same developer set if their
lifespans are within ∆t of each other, even if they belong to different code
proximities. For example, if we have

F1 : P1,8, P2,8, P2,9, P1,10, P2,12

F2 : P2,10, P1,11, P2,11, P2,14,

we merge them into:

F1,2 : P1,8, P2,8, P2,9, P1,10, P2,10, P1,11, P2,11, P2,12, P2,14.

We extract the putative CoGs from those last sequences.
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F1:

F2:

P1

P2

P3 P2 P1

P3

Tstart Tend
Time:

Fig. 2. An illustration of a sample CoG of size 3 (developers P1, P2 and P3),
and strength 2 (code proximities F1 and F2). The lifespan of this group is
l = Tend − Tstart.

The number of developers in each putative CoG is its “size” and the number
of modules in each group is its “strength”. A sample putative CoG can be
seen in Figure 2. This definition of a CoG is closely related to the concepts of
“implicit teams” and “succession” in Mockus’ research [43].

4.4 Choices for Temporal and Code Proximity

We thought of two possible choices for code proximity, a file and a package,
and based on the existing literature [33, 53], both seem to be valid choices.
The most obvious choice for code proximity is that of a file, and this level of
interaction is easy to mine directly from the commit logs. However, it may not
provide the appropriate level of modeling putative CoGs as, often, adding a
feature or fixing a bug requires touching multiple files in the same package, and
even beyond. The consequence is that when developers divide tasks, they may
split those files into non-overlapping groups in order to maximize throughput
among them. Thus, people touching different files in the same package may
still be working together. For this reason, we decide to use package-level as
our code proximity. 2

To chose the appropriate ∆t we reasoned that, on average, contribution to
an ASF OSS project may not be a developer’s top priority, so he may want
to postpone it a day or two, or even do it on weekends. On the other hand,

2 Most of our studied projects are written in Java where files within the same file di-
rectory are considered to be in the same package. The three non-java projects, “axis2 c”,
“log4net”, and “log4php”, use the same file structure as their Java counterparts,“axis2 java”
and “log4j”.
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Fig. 3. The effect of time windows size on number of groups identified in
projects. Each line represents one of the 26 projects.

too big a time window would result in two non-related changes to a file to be
counted towards as collaboration. We chose ∆t to be one week (7 days) in this
study.

To make sure our choices for temporal and code proximity were sensible,
we applied the above algorithm with a range of possible parameter values: file
or package level for code proximity, and between 2 to 12 days for ∆t. The
number of CoGs identified in each project for all combinations are plotted in
Figure 3. Based on the stability of the results and the above reasoning we have
concluded that our choices are appropriate. 3

We also note that our choices are also greatly in agreement with the prior
study, that used slightly finer time intervals [70].

4.5 Mining Developer Mailing Lists

Mailing lists serve as the main communication hubs for OSS projects [25,26],
and have been studied in recent years [22, 71]. To evaluate whether puta-
tive CoG members coordinate among themselves, we extract messages and
responses between developers from developer mailing lists.

The first challenge in mining these lists is unmasking user aliases. The large
number of participants in the mailing lists makes it very difficult to manu-
ally curate the participants’ aliases. Pagano and Maalej who investigated on
blogs as form of coordination and communication tool used Dice similarity

3 We also generated all the results for Tables 3, 6 and 10 for choices of 2 and 5 days
for ∆t. While the results were slightly different, the overall theme of the tables remained
consistent with our original choice.
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to merge duplicate blogs [51]. We use parsers, that we have developed pre-
viously, which employ a technique introduced by Bird et al. [5], which we
later improved upon [22], to semi-automatically unmask aliases. The code for
both parsers is available at http://www.gharehyazie.com/supplementary/

teamwork/miningscripts/. In Appendix B we describe how we manually ver-
ified the correctness of these scripts on a sample of our data, where they exhib-
ited 99% accuracy. These scripts have also been used in a number of previous
studies [5, 21,22,71].

Next we describe how we construct the links between people. Messages sent
to a mailing list are broadcast to all subscribed participants. Person-to-person
exchanges can be inferred, using the “in-reply-to” field in the messages. When
person B sends a broadcast message in reply to another broadcast message
originally sent by person A to the list, we infer that B intends to communicate
with A [5], and record it as a message from B to A.

4.6 Extracting Message Text

To study the content of the messages posted by developers, we first process
them to eliminate artifacts. Messages usually contain the body of the message
they are in response to. To remove those we filter out patterns highlighting
prior text, starting each line with a special character such as ‘>’, ‘|’, ‘}’ ,
or ‘*’, or all the lines after tags such as: “----begin forwarded text----”. We
also remove punctuation and numbers, and convert all messages to lowercase
letters.

We use these texts to create “word clouds”. When creating word clouds
from text, it is common to perform stemming, and to remove stop words.
We omitted stemming because we are interested in looking at occurrences of
verbs and nouns, and stemming works against this distinction. We did remove
stop words, but not the standard English stop words. We want to see the
occurrence of words such as “you”, “I”, and “us”. Apart from these common
but interesting words, other very common words such as “the”, “this”, and
“that” were removed.

4.7 Generating Randomized Datasets

To evaluate the significance of the putative CoGs frequencies in each project,
we compare their counts against a randomized baseline model, i.e., chance
collaboration. We generate a baseline distribution by randomizing the commit
dataset for each project 20 separate times. This small number of random sam-
ples was imposed by the computational complexity of the operation and the
total number of different projects; it still provides sufficient statistical power
for our purposes.

http://www.gharehyazie.com/supplementary/teamwork/miningscripts/
http://www.gharehyazie.com/supplementary/teamwork/miningscripts/
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Table 2. A sample changelog along with a valid and two invalid randomization
examples. Sample 1 is invalid because file 3 is changed before its first change
in the original data. Sample 2 is invalid because file 1 and file 3 are changed
with a different frequency than original data.

Original Valid Invalid 1 Invalid 2
logid fileid logid fileid logid fileid logid fileid

1 1 1 1 1 1 1 2
1 2 2 2 1 3 2 3
2 1 3 1 2 2 3 4
2 3 3 2 3 1 3 1
3 4 3 4 3 4 4 1
3 1 4 1 4 2 4 2
4 1 4 4 4 1 5 1
5 2 5 1 5 1 5 3
5 4 5 3 5 4 5 2

We randomize the commit data by changing the files that a developer
touches during a commit to a random set of files of equal cardinality, chosen
from all available files at the time of that commit. This ensures the temporal
order of the commits is preserved while the files changed during each commit
are randomized. 4 We take care that files introduced later in a project are not
changed before they were introduced in the project by only assigning a file to
a commit after it had been introduced in the original data.

We also take care to keep the file size the same as in the empirical data.
When we randomize files through commits, we preserve the number of times
a file has been changed plus the number of lines added and deleted, thus file
size remains similar to the original data, with respect to each time they are
changed, e.g., a file that has been changed three times has the same size after
each commit in the randomized dataset that it has in the original dataset after
the same number of commits, but when these changes were made may differ
between the two. A sample randomization is presented in Table 2 for further
clarification.

The alternative randomizations of a) shuffling people around, and b) shuf-
fling the commit dates are not as desirable. The former randomization is not
realistic, because each developer stays with a project for a limited time (around
2− 3 years). If we randomize developers across commits, it would appear that
all developers are spread out thinner, in terms of commit numbers, but across
the whole life span of the project (from 6 to 12+ years). The latter option
is even worse. Not only it has the shortcomings of the previous alternative,
but also distributes each file across the whole project time line, and it re-
moves spikes in temporal commit activity on which the definition of group
collaboration relies on.

4 The reason that we speak of files instead of packages at this stage is that commit datasets
record files, and to randomize them, we have to randomize at a file level. All results extracted
from these randomized datasets are still based on package level code proximity.
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4.8 Developer Survey

We designed a short survey to inform our assumptions and qualitatively verify
our findings on the issue of collaborative development in ASF projects. The
questions were designed to be concise and as unambiguous as possible. A copy
of the questionnaire can be found in Appendix A.

When selecting subjects for this survey, and designing the questions, we
faced a number of challenges. The first one was that we needed developers who
had participated in a project long enough to potentially have a meaningful
form o collaboration with others. For example just one month of contributions
is not long enough to form a solid opinion on the state of collaboration in
a project, so we selected the developers with at least 2 years of contribution
experience.

The second challenge was passage of time and memory recollection. As
previously mentioned, the selected projects were at least two years old at the
time of data gathering (March 2012). Many developers have since left the
projects, and/or may not have a clear recollection of how things were, say 10
years ago. This affects us in two major ways. First, We cannot use the survey
to directly verify our results through developer confirmation. For example, we
cannot ask: “were you collaborating with person X around date Y on module
Z?” This is too specific of a question and even if people do provide an answer,
we cannot be very confident in their recollection of the events. We need to
design the questions towards the general act of collaboration and cooperation
than any specific instance. Second, we want to ask people with the most recent
experience so that their recollection will be as accurate as possible, so we chose
developers who were active at the end of the data gathering.

This leaves us with 85 developers, who we contacted through email and in-
vited them to participate in the survey. Participation was voluntary and confi-
dential, and was expected to take less than 10 minutes. We received 9 responses
to the survey, a response rate of roughly 11%. Apart from the mentioned diffi-
culties, several factors also contribute to the low response rate, mainly the fact
that the questionnaire is classified as “junk mail” by many developers. As one
of the corresponding developers mentioned: “Being an active OSS developer
means I get asked to fill in surveys several times a month...What is the benefit
for (project name), the ASF or myself?”. Taking this into account rather ex-
plains our lower than expected response rate [4]. The lesson we took from this
experience was that incentivization is crucial for high survey response rates.

4.9 Measures of Focus and Ownership

To reason about the relationship between the distribution of commits across
packages and group collaboration, we use the Developer Attention Focus (DAF)
and Module Activity Focus (MAF) measures [54]. DAF measures a developer’s
focus, i.e., if they concentrate their efforts on very few files rather than work-
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ing on many and MAF measure ownership, i.e., whether there is just one or
very few developers who wrote most of that mentioned file or package. These
metrics were initially introduced by Bluthgen et al. [8] and here we give a brief
description of them for completeness.

Let Wn,m = {wi,j} denote a commit matrix for a project of m developers
and n modules, where wi,j denotes the number of commits by developer j to
modules i. Then the total commits by developer j is Dj =

∑n
i=1 wi,j and the

total commits that a module i receives is Mi =
∑m

j=1 wi,j . Here module can
be a file or a package. We use the latter in our measurements to be consistent
with our definition of collaboration. The total commits to all modules is then
A =

∑n
i=1

∑m
j=1 wi,j , the proportion of commits to module i is ri = Mi/A,

and the proportion of commits by developer j is qj = Dj/A. The proportion
of commits by developer j to module i is q′i,j = wi,j/Dj and the proportion of
commits to module i is r′i,j = wi,j/Mi.

Based on these definitions, the DAF and MAF metrics are given by:

DAFj = (δj − δjmin
)/(δjmax

− δjmin
),

and
MAF i = (δi − δimin

)/(δimax
− δimin

)

where [54]:

δj =

n∑
i=1

(
q′ij ln

q′ij
ri

)
,

and

δi =

m∑
j=1

(
r′ij ln

r′ij
qj

)
.

Based on these definitions, DAF and MAF range from 0 to 1. A low DAF
(closer to 0) means that a developer has spread his commits across many files
rather evenly, and a high DAF (closer to 1) means that all of their commits
concern very few files. Similarly a low MAF would mean, that commits on a
file come from many users thus the file has a low ownership, while a high MAF
means most commits on that file are coming very few developers, i.e., the file
has a high ownership and those developers are called the file owners.

These measures of focus are based on cross entropy and can also be seen
as related to entropy based inequality indices such as the Theil index used to
aggregate software metrics [62,64].

5 Results and Discussion

5.1 RQ1: Identification, Validation and Verification of CoGs

Using the algorithm above we identified putative CoGs in each of the 26 OSS
projects described above. Table 3 gives the number of CoGs in each project
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Table 3. The number of identified and confirmed CoGs in each project, along
with minimum, average and maximum number of CoGs in the randomized
dataset.

Collaborative Groups Randomized Data
Identified Confirmed Min Average Max

abdera 28 14 35 41.5 48
activemq 351 161 1492 1544.0 1589
ant 707 299 2296 2335.8 2399
avro 30 24 112 127.4 141
axis2 c 408 129 780 813.8 841
camel 709 325 1952 2015.8 2066
cassandra 267 32 308 327.2 344
cayenne 208 43 356 380.9 406
cxf 1426 291 6980 7054.1 7126
derby 868 521 2101 2166.7 2226
hadoop hdfs 193 35 316 340.0 362
harmony 65 17 125 133.2 143
hive 253 58 394 411.9 432
ivy 60 11 77 83.7 89
log4j 99 28 226 236.4 256
log4net 10 4 16 17.8 20
log4php 6 5 13 15.3 18
lucene 397 223 1105 1140.0 1171
mahout 189 111 535 556.8 577
nutch 82 41 195 203.2 214
ode 234 99 500 523.1 541
openejb 567 132 3327 3369.2 3413
pluto 87 45 223 230.5 239
solr 315 159 849 865.5 907
wicket 1377 220 2792 2840.1 2892
xerces2 j 435 20 1041 1076.1 1109

along with the average, min and max number of CoGs in the randomized
dataset. We also generate a normal distribution from the randomized datasets’
number of identified CoGs and calculate the probability that the empirical
results belong to the same distribution i.e., the probability of the number of
identified CoGs, given the normal distribution. The probability in all cases
is smaller than 1%. The randomized models are meant not as a model of
an actual developer collaboration, but rather as a way of excluding the most
obvious random behavior.

We illustrate next the distribution of group sizes within and between
projects. For two randomly selected projects, we have provided box-plots of
the distribution of group sizes in our baseline random models in Figure 4. The
red line shows the distribution of group sizes in our empirical data. The em-
pirical data seems to follow the same distribution, but at significantly lower
levels.Groups above a certain size do not occur in our empirical results.

The above results indicate that the frequency of identified collaboration is
significantly lower than expected, i.e., as compared to levels predicted by the
randomized models. This is consistent with developers’ being selective about
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Fig. 4. Distribution of CoGs’ size in two OSS projects. The box-plots show the
distribution of the randomized baseline models and the red lines shows the
empirical results.

collaborations or working on a team. It also is consistent with the notion that
randomly forming teams may not be beneficial. In addition, our findings that
larger groups are much less prevalent than smaller ones, is arguably what we
expected as the costs of coordination and communication increase with group
size, along with the likelihood of merge-conflicts and other such difficulties.

5.1.1 File Name Mentions as Evidence in Support of CoGs as Teams

To further assess whether the extracted putative CoGs are meaningful, we look
at the content of messages exchanged between CoG members.5 We mined the
developer mailing list archives for messages between developers, as described.
For each putative CoG, we searched in all messages sent between developers
for the names of files from their contribution sequences. 6 A putative CoG is
considered confirmed if the exact name of at least one of those files is found
in the subject or body of the message, during that CoG’s lifespan. The results
from our approach are presented in Table 3, in the confirmed column. We
managed to identify at least one of the files a putative CoG was inferred to
have been working on in 38% of CoGs in all projects. This number was (not
unexpectedly) much lower, around 16% on average, for projects where com-

5 We scanned by hand a number of CoGs and were able to identify via the contents of
their messages that developers were truly coordinating their collaboration as predicted. That
encouraged us to come up with the automated, but necessarily more simplistic, large-scale
analysis, presented here.

6 We search for files within the packages subject to collaboration since in technical dis-
cussions, file names occur naturally and more frequently than package names.
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Table 4. The number of identified and confirmed CoGs in each project. This
is similar to Table 3 but only done with CoGs extracted with ∆t = 2 and
∆t = 5.

Collaborative Groups ∆t = 2 Collaborative Groups ∆t = 5
Identified Confirmed Identified Confirmed

abdera 18 8 26 14
activemq 259 80 334 137
ant 681 217 732 284
avro 15 8 29 20
axis2 c 418 83 424 111
camel 580 266 714 333
cassandra 277 13 280 25
cayenne 145 21 200 38
cxf 1162 149 1403 252
derby 859 444 888 519
hadoop hdfs 211 34 208 40
harmony 51 15 64 17
hive 241 46 262 59
ivy 46 5 61 10
log4j 73 15 90 26
log4net 8 4 8 4
log4php 4 4 6 5
lucene 296 161 379 203
mahout 114 53 180 94
nutch 42 20 68 35
ode 186 39 240 79
openejb 416 64 524 102
pluto 55 22 74 37
solr 202 92 306 143
wicket 1126 139 1381 195
xerces2 j 404 12 449 18

munications level was much lower than development activity i.e., there were
fewer messages in their mailing lists than commits in the repository. Interest-
ingly, when we examine teams identified with a smaller temporal proximity, the
percentage of confirmed teams drops to 30% for ∆t = 5 and 26% for ∆t = 2
(see Table 4). This further strengthens our confidence in our choice of temporal
proximity for CoGs.

This approach likely underestimates the number of CoGs that coordinate
via the mailing lists as it is possible that even though group members are
communicating, file names may not be mentioned, or may be mentioned in
an inexact form. It is also likely that they use other communication methods,
as pointed out by developers in our survey, e.g., IRC or personal email for
coordination, even though it is discouraged by ASF.

Taking the underestimation into account, the confirmed numbers are strong
evidence supportive of the hypothesis that a high number of CoGs coordinate
and collaborate explicitly. This validates, in part, our algorithmic approach
for identifying CoGs, as it shows that when we identify a CoG it is likely that
it is a real team.
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Fig. 5. Difference word cloud of words used within messages within and outside
of CoGs. The size of each word represents the extra prevalence it has in the
corresponding group.

5.1.2 Language Differences in Group vs. Solo Mode Communication

We were also interested to learn whether there is any semantic difference be-
tween those messages posted while developers were involved in CoGs and while
they were working solo. As previously mentioned, we extracted the text of each
message and parsed their words. From them, we created two distributions of
word frequencies: “group” word distribution, of all words used in messages
posted by people during their time spent in CoGs, and “solo” word distribu-
tion, of all words used in messages posted by people during their time spent
not in CoGs. Each distribution was normalized by the number of messages
in each group. A comparison contrasting word cloud of the resulting word
distributions is shown in Figure 5, where we see a stark difference between
group-mode language and solo-mode language. 7

We observe that while in group-mode, developers use more action words,
such as “should”, “change”, “think”, and “release”, along with task oriented

7 The word cloud was created using the “comparison.wordcloud” function in the “word-
cloud” package in R.
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Fig. 6. The frequency of responses to the typical number of collaborators on
a task.

terms like “task”, “work”, “add” and “remove”. These words are in great
agreement with commit message language found by Maalej and Happel [40,41],
which together suggest that CoG conversations may be more task oriented
than solo developer messages.

In contrast, solo-mode messages are more ripe with words like “bug”, “de-
bug”, “build”, “trace” and “exception”, hinting at greater focus on removing
defects and improving quality rather than adding new features to the soft-
ware. We also point out the prevalence of negative terms such as “don’t” and
“doesn’t” in group messages versus solo-mode messages.

Thus, the group work conversation in CoGs seems different than the con-
versation that individuals not in CoGs are having, with the latter having less
indicators of coordination than the former. This is consistent with people’s
behavior in teams, when they communicate to coordinate and exchange infor-
mation, versus requesting help or reporting issues, typically done while working
individually.

5.1.3 Survey Results

The survey of the ASF developers offers means for triangulation of our results.
The developers who responded largely agreed with each other on most topics.
Here we discuss the findings from our survey as they pertain to this RQ; others
will be presented with the subsequent RQs. According to our survey results
presented in Table 5:
Working on a project is a collaborative effort: 8 out of 9 Participants
agreed or strongly agreed that OSS development is a collaborative effort rather
than a quilt of solitary contributions. The one person who strongly disagreed
with this, responded “I tended to find that only implementing new features
was collaborative...” when asked which of their tasks were more collaborative.
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Table 5. Distribution of responses to agreement questions in the survey.

Question Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

Working on the project was a
collaborative effort

1 0 0 2 6

You actively attempted to “team up”
with others to complete tasks

0 1 2 2 4

Collaboration increases productivity 0 0 1 3 5
Collaboration requires extra
coordination and communication

1 1 1 4 2

Developers choose what to work on: When we asked developers about
how they choose and prioritize their tasks and if they choose what they work
on, we got responses such as “Choose my own tasks, whatever itches I want to
scratch”, “I’ve usually selected tasks with which I was comfortable implement-
ing them...”, “what ever needs to be done”, “...each worked in the area they
were most comfortable with and also addressed issues that were critical...”, and
“...I jump on any issue that affects reliability or correctness.”, all indicating
that it was the developer’s decision to work on a specific topic and region of
the project, even if this decision was based on certain criteria and priorities.
Thus, working on the same code proximity is by choice, not forced. Devel-
opers actively team-up to complete tasks: 6 out of 9 agreed or strongly
agreed while 1 person disagreed with this, which implies that collaboration is
explicit and what we find is not just an artificial artifact of our methodology.

We asked developers about the typical time to complete a task and most of
them (6 out of 9) responded: Completing typical tasks takes 3− 5 days,
and two others said 1 − 2 days. The median lifespan of a CoG across all 26
projects is 6 days. This shows that identified CoGs more or less correspond
to actual development tasks. Figure 6 also shows the response to the typical
number of people involved in a task ranges between 2 and 5 with
a downwards trend towards larger teams that highly matches the range of
identified CoGs size as previously discussed Figure 4.

While small, this survey was informative. The developers’ answers clearly
indicate their preference for choosing one’s task in OSS projects, and that
teaming up is task-based and organic. The surey also pointed out the pref-
erence among developers for small teams. The patterns in these answers are
largely in agreement with our quantitative findings. We also noted divergent
responses, reminding us of the diversity among OSS developers and their mind-
sets.
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Table 6. Amount of person-days and commits in each project, separated by
group vs. solitary development. Bold items in columns 3 and 6 represent values
greater than 0.7 (significant values). Projects highlighted in the last column
express greater commits per day during group vs. solitary development. CoGs
are extracted with ∆t = 7.

Person Days (D) Commits (C) C/D
CoG Solo G/S CoG Solo G/S CoG Solo

abdera 292 3912 0.07 358 1279 0.28 1.23 0.33
activemq 4670 17397 0.27 2855 4267 0.67 0.61 0.25
ant 13754 30986 0.44 6898 10532 0.65 0.50 0.34
avro 320 3647 0.09 169 973 0.17 0.53 0.27
axis2 c 5091 8210 0.62 4453 3372 1.32 0.87 0.41
camel 8955 12181 0.74 7008 8704 0.81 0.78 0.71
cassandra 4342 467 9.30 4155 4157 1.00 0.96 8.90*
cayenne 2504 15565 0.16 2442 6241 0.39 0.98 0.40
cxf 10936 22971 0.48 7846 11265 0.70 0.72 0.49
derby 15227 13717 1.11 4979 5667 0.88 0.33 0.41*
hadoop hdfs 4339 5322 0.82 1068 1486 0.72 0.25 0.28*
harmony 520 4976 0.10 437 1025 0.43 0.84 0.21
hive 4834 2067 2.34 1175 1559 0.75 0.24 0.75*
ivy 876 5173 0.17 581 2141 0.27 0.66 0.41
log4j 1414 17639 0.08 1044 2752 0.38 0.74 0.16
log4net 66 4937 0.01 42 653 0.06 0.64 0.13
log4php 92 3115 0.03 176 695 0.25 1.91 0.22
lucene 5700 23342 0.24 2574 3955 0.65 0.45 0.17
mahout 1992 8058 0.25 1013 1737 0.58 0.51 0.22
nutch 884 12251 0.07 371 1466 0.25 0.42 0.12
ode 2753 6359 0.43 2309 3465 0.67 0.84 0.54
openejb 7787 29454 0.26 7646 12217 0.63 0.98 0.41
pluto 934 11724 0.08 660 1792 0.37 0.71 0.15
solr 3595 9958 0.36 1498 2571 0.58 0.42 0.26
wicket 13680 10972 1.25 15837 12140 1.30 1.16 1.11
xerces2 j 6523 16421 0.40 3522 4540 0.78 0.54 0.28

Result 1: Collaborative Groups form within ASF OSS projects or-
ganically and are unlikely to be simply an artifact of our approach. CoG
members communicate and coordinate through the developer mailing lists,
and their communication suggests a meaningful difference between devel-
opment and coordination patterns during and outside putative CoGs. The
developers surveyed describe collaboration mechanisms consistent with our
findings.

5.2 RQ2: Collaboration Prevalence

To contrast the time spent and code commits submitted in each project dur-
ing collaboration periods as compared to periods of solitary work, we count



Title Suppressed Due to Excessive Length 25

Table 7. Amount of person-days and commits in each project, separated by
group vs. solitary development. This is similar to Table 6, only done with
CoGs extracted with ∆t = 2.

Person Days (D) Commits (C) C/D
CoG Solo G/S CoG Solo G/S CoG Solo

abdera 82 3394 0.02 180 1379 0.13 2.20 0.41
activemq 1178 20188 0.06 1485 5253 0.28 1.26 0.26
ant 2746 41994 0.07 4139 12384 0.33 1.51 0.29
avro 35 3335 0.01 51 978 0.05 1.46 0.29
axis2 c 1699 11602 0.15 3315 4614 0.72 1.95 0.40
camel 2850 18286 0.16 4043 10591 0.38 1.42 0.58
cassandra 1603 3183 0.50 2600 5035 0.52 1.62 1.58
cayenne 523 17138 0.03 986 7051 0.14 1.89 0.41
cxf 3467 30325 0.11 4940 13092 0.38 1.42 0.43
derby 2737 24812 0.11 3249 6843 0.47 1.19 0.28
hadoop hdfs 626 9035 0.07 835 1500 0.56 1.33 0.17
harmony 200 4391 0.05 291 1154 0.25 1.46 0.26
hive 926 5975 0.15 825 1642 0.50 0.89 0.27
ivy 141 5908 0.02 248 2265 0.11 1.76 0.38
log4j 279 18770 0.01 582 3003 0.19 2.09 0.16
log4net 20 4983 0.00 29 664 0.04 1.45 0.13
log4php 20 1967 0.01 97 736 0.13 4.85 0.37
lucene 908 27707 0.03 1444 4638 0.31 1.59 0.17
mahout 399 9651 0.04 521 2041 0.26 1.31 0.21
nutch 99 13036 0.01 132 1557 0.08 1.33 0.12
ode 622 7855 0.08 1283 4162 0.31 2.06 0.53
openejb 1580 35576 0.04 4435 14409 0.31 2.81 0.41
pluto 228 12429 0.02 325 1998 0.16 1.43 0.16
solr 613 12610 0.05 828 2952 0.28 1.35 0.23
wicket 4483 20169 0.22 10669 16795 0.64 2.38 0.83
xerces2 j 1578 21366 0.07 2277 5595 0.41 1.44 0.26

the number of commits and days that each developer contributed/spent while
inside a CoG and compare those to the commits and days that developer con-
tributed/spent while developing individually. Then, we aggregate the results
for each project. This gives us a glimpse into the amount of time spent in each
project by all developers, (Table 6, Columns 1 to 3), and the amount of com-
mits contributed in each project, by all developers, (Table 6, Columns 4 to 6).
There we see that only in 6 out of 26 projects, on average, developers spend a
comparable (> 70%) or significantly higher amount of time working in groups
than working alone. And in 9 out of 26 projects, on average, there are compa-
rable (> 70%) commits during group collaboration than solitary work. From
the above, we can also measure the number of commits per unit time, and
compare them during periods of collaboration and periods of personal work,
in Table 6, Columns 7 and 8. Interestingly, while most projects expressed a
smaller portion of commits and person days assigned to groups, the ratio of
commits/(person days) is greater in CoGs in all but 4 of the projects. Thus,
we observe that although the amount of time and effort spent during collab-
oration differs from one project to another, and in most cases it is not a big
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Table 8. Amount of person-days and commits in each project, separated by
group vs. solitary development. This is similar to Table 6, only done with
CoGs extracted with ∆t = 5.

Person Days (D) Commits (C) C/D
CoG Solo G/S CoG Solo G/S CoG Solo

abdera 212 3992 0.05 287 1310 0.22 1.35 0.33
activemq 3219 18848 0.17 2479 4578 0.54 0.77 0.24
ant 9071 35669 0.25 6146 11042 0.56 0.68 0.31
avro 208 3759 0.06 140 975 0.14 0.67 0.26
axis2 c 3815 9486 0.40 4101 3776 1.09 1.07 0.40
camel 6410 14726 0.44 6271 9258 0.68 0.98 0.63
cassandra 3536 1273 2.78 3919 4361 0.90 1.11 3.43*
cayenne 1586 16418 0.10 1922 6538 0.29 1.21 0.40
cxf 8369 25472 0.33 6985 11821 0.59 0.83 0.46
derby 11121 17823 0.62 4604 5996 0.77 0.41 0.34
hadoop hdfs 2823 6838 0.41 1027 1488 0.69 0.36 0.22
harmony 405 5091 0.08 409 1046 0.39 1.01 0.21
hive 3223 3678 0.88 1096 1576 0.70 0.34 0.43*
ivy 481 5568 0.09 459 2190 0.21 0.95 0.39
log4j 811 18242 0.04 871 2845 0.31 1.07 0.16
log4net 35 4968 0.01 35 658 0.05 1.00 0.13
log4php 92 3115 0.03 170 699 0.24 1.85 0.22
lucene 3318 25723 0.13 2271 4146 0.55 0.68 0.16
mahout 1299 8751 0.15 894 1829 0.49 0.69 0.21
nutch 502 12633 0.04 291 1501 0.19 0.58 0.12
ode 1775 6760 0.26 1963 3697 0.53 1.11 0.55
openejb 5324 31917 0.17 6795 12817 0.53 1.28 0.40
pluto 638 12020 0.05 547 1874 0.29 0.86 0.16
solr 2155 11398 0.19 1325 2674 0.50 0.61 0.23
wicket 11006 13646 0.81 14700 13268 1.11 1.34 0.97
xerces2 j 4327 18617 0.23 3168 4865 0.65 0.73 0.26

portion, there seems to be an increase in productivity during these collabora-
tions. This difference between productivity within a CoG against individual
development exists and is even stronger when we lower the temporal proximity
parameter of our CoG extraction mechanism (Tables 7 and 8).

To study whether tenure, or time spent with the project, affects developers’
inclination towards co-development, we select developers with at least 2 years
of commit activity (the dates of their commits span more than 2 years). We
call them dedicated developers. We then measure the number of groups each
of these developers participated in co-development during their first and last
years as developers. We also count the number of days they spent in CoGs
during the first and last years. The results in Table 9 show that over all
projects, most developers (148/214 = 69%) participate in more groups in
their first year. We also see that over all projects, the difference in the days
participating in CoGs in the first vs. the last year (129/214 = 60%) is slightly
above indifference (50%). This suggests that developers are not less inclined
to collaborate later on, but instead they participate in slightly fewer, longer
lasting groups. One explanation for this is that, perhaps, the eagerness of youth
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Table 9. The correlation between tenure and co-development. “Group Count”
columns “First” and “Last” show the number of CoGs a dedicated developer
has participated in during their first and last developer years. “F>L” shows
the number of dedicated developers who have participated in more CoGs in
their first year than their last.“Group Days” columns are similar, but show
the days a dedicated developer has been part of a CoG.

Developers Group Count Group Days
All Dedicated First Last F>L First Last F>L

abdera 7 2 18 0 2 729 0 2
activemq 25 13 300 127 7 4032 3899 6
ant 37 18 465 47 15 5636 3797 13
avro 10 1 14 9 1 365 308 1
axis2 c 20 10 450 128 8 3363 3311 4
camel 30 13 546 414 10 4857 4518 6
cassandra 13 2 83 170 0 734 734 1
cayenne 18 10 154 29 9 3381 1139 10
cxf 38 18 1160 587 13 6366 6310 13
derby 29 15 580 386 11 4599 5170 7
hadoop hdfs 23 1 15 8 1 336 381 0
harmony 16 3 0 53 0 0 869 0
hive 18 2 91 99 1 749 731 2
ivy 6 4 33 15 2 1033 836 3
log4j 13 9 88 41 6 2830 1381 7
log4net 5 3 4 2 1 852 672 1
log4php 6 2 4 3 1 730 623 2
lucene 32 15 199 147 9 4977 4460 4
mahout 13 5 51 90 2 1558 1743 1
nutch 16 8 61 19 6 2731 1888 6
ode 15 3 134 65 3 1017 727 1
openejb 35 17 233 225 8 5495 4105 11
pluto 21 6 39 34 4 1794 1523 4
solr 18 9 188 112 7 2900 2358 5
wicket 24 12 1049 248 11 4779 4169 9
xerces2 j 26 13 379 173 10 4790 4168 10

Total 514 214 6338 3231 148 70633 59820 129

over time gets exchanged for higher focus, or maybe loyalty, in latter years.
Our findings also point to another interesting and expected phenomenon: that
people tend to build lasting relationships, which survive best in smaller groups.
From a social perspective, it could be argued that this is consitent to the
tendency of most people to belong to a smaller, more personal community,
within larger projects or society. Such smaller, more persistent groups can cut
down coordination and increase trust.



28 Mohammad Gharehyazie, Vladimir Filkov

Result 2: Developers spend a considerable fraction of their develop-
ment time working in groups, and while their patterns of contribution and
effort within CoGs vary over projects, in aggregate when in CoGs, they
submit more code per unit of time. In the developers’ latter time with a
project they collaborate for almost the same amount of time, but partici-
pate in fewer groups.

These results also have implications for practitioners as they can point
them towards more efficient and less distracting coordination practices. Namely,
working in a group is to be expected, and teams should be chosen well and
social links nurtured. As experience is gained, spending more time in a team or
task can be more rewarding. Developers with more experience can concievably
be resources for information on good teams and how to make the best out of
one’s time in OSS projects.

5.3 RQ3: Focus vs. Collaboration

To study the correlation between group collaboration and developer and pack-
age focus, we measure the focus of all developers and on all packages in each
project.

First, we investigate the correlation between developer focus and CoG
membership. Ideally, to compare more and less focused developers, we would
select from the first and last quartiles in each project. However, since many of
the projects have a small number of members, these quartiles would have 3 or
fewer members, thereby precluding meaningful statistical analyses. Instead, we
pool over all projects, i.e., we take the first, Q1, and last, Q4, quartiles, with
respect to focus, of developers from each project, and we merge the developers
from all projects into two quartile lists. Thus, the first group are developers
whose DAF is less than 25% of the population in their project, i.e., the less
focused group, and the second group are those whose DAF is greater than 75%
of their projects’ population, i.e., the focused group.

For each group we measure the number of days the developers were part
of a putative CoG. A beanplot [35] of the distribution of group membership
days for these groups is shown in Figure 7. The data shows that the number
of days spent in putative CoGs is negatively correlated with developer focus,
i.e., the more focused one is, the less likely one is to be part of a group, and
vice versa. A Mann-Whitney U test of these two populations shows there is a
statistical difference between the two (with a p-value of < 10−3) and that we
are not mislead by their visual difference.

We repeat the same process for packages, separating them and then merg-
ing them into two groups: the first group is made up of packages with MAF
less than 25% of packages in their project and the second, packages with MAF
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Fig. 7. Distribution of collaboration time vs. focus. Left: Distribution of col-
laboration days for less focused vs. focused developers. Right: Distribution of
days involved in collaboration for packages with high vs. low ownership.

greater than 75% of packages within their project. A beanplot of the distri-
bution shows that there is also a negative effect between MAF and being in a
putative CoG, i.e., the higher a package’s attention focus, the less likely it is
being collaborated on in a group. We also confirmed this difference by running
a similar Mann-Whitney U test on package focus groups (p-value < 10−10).

Result 3: Developers with more focus collaborate less often, and pack-
ages with higher ownership are also less likely to be subject to collaboration.

When it comes down to atomic programming tasks, be it an algorithm
implementation, or coding up a web page, it is reasonable that one person
would take on the lion’s share of the development, and files containing such
tasks won’t be collaborative venues. This, in conjuction with the previous
results, indicates that different programming activities may be in varying need
of collaborative attention, e.g., adding features may need more collaboration
than a well developed algorithm implementation. Mapping such tasks onto
individual programmer’s needs, abilities and available time can potentially
aid in the self matching to the available tasks.

5.4 RQ4: Productivity and Effort vs. Collaboration

We study productivity using two of the metrics previously used by Xuan and
Filkov [70]; code effort and code growth. Code effort is defined as the number
of lines added plus number of lines deleted from each package, at each commit.
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Table 10. Correlation between co-development and developer productivity. The
first 4 columns shows the difference between group and solitary development
in terms of LOC per commit per file. Values greater than 3 lines have been
highlighted as a significant difference. The values are rounded, so a negative 0
means the changes were negative, but close to zero. Empty cell demonstrate
lack of statistical significance.

Add Del Effort Grow Age Msgs. Files Cmts. Devs.

abdera -0 0 -2 -2 2111 2921 3193 1492 13
activemq -1 1 -25 -2 2283 20896 16788 6124 28
ant 0 -9 -0 4447 20433 11620 14710 44
avro -1 0 2 -3 1074 7114 3021 984 12
axis2 c -6 1 -18 -5 2995 15201 10262 6742 24
camel -28 1 -25 -33 1749 27431 36965 12257 31
cassandra -46 1 -52 -55 1121 4105 17125 5968 13
cayenne -0 0 -15 -2 2189 6247 31489 7514 20
cxf 3 -0 1 11 2052 7952 37867 15322 45
derby -0 -0 -1 0 2781 74850 6563 8301 35
hadoop hdfs -2 1 -10 -3 998 2608 1153 1529 25
harmony -39 0 -39 -48 2378 31855 14898 1377 25
hive -3 1 -4 -5 528 11373 7333 1715 18
ivy 1 0 397 907 3513 2347 9
log4j -0 1 -8 -1 4114 5826 5519 3377 18
log4net 2975 1199 1060 683 7
log4php -2 1 -3 -11 2263 1175 1409 803 9
lucene -0 -0 -28 -1 3846 66817 6674 5343 41
mahout -2 1 -3 -4 1519 18640 5123 2280 15
nutch -5 2 -4 -15 2594 13041 3072 1600 16
ode -4 1 -8 -10 2225 7823 11006 4901 17
openejb 1 -0 -23 13 2080 8191 43960 16620 38
pluto -0 0 -6 -0 2907 4038 5971 2150 24
solr -2 0 -17 -6 1548 21359 8534 3354 19
wicket 0 -17 0 1999 12479 48045 24059 24
xerces2 j 1 2 1 4373 4744 3732 7336 33

Code growth is number of lines added minus number of lines deleted from each
package, at each commit, i.e., it shows a package’s size change in terms of LOC
per commit.

In each commit a certain number of packages are changed; some number
of lines are added and some are deleted. We group commits into those during
group collaboration and those during personal development but we only count
commits from developers that at some point are part of a CoG, as we wish to
measure the difference in their productivity during and outside collaborations.
We then measure code effort and growth on all developers in each project, for
both groups of commits. If there is a meaningful statistical difference between
the two populations, then developer productivity has changed during group
collaboration. The results are presented in Table 10. The values in columns
1− 4 represent the confidence interval of the Mann-Whitney U test of the two
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Table 11. Correlation between co-development and developer productivity.
This table is similar to Table 10, only for ∆t = 2 and ∆t = 5.

∆t = 2 Days ∆t = 5 Days
Add Del Effort Grow Add Del Effort Grow

abdera -1 0 -3 -4 -1 0 -3 -2
activemq -0 1 -20 -1 -0 0 -22 -1
ant 0 -2 0 0 -5
avro -2 1 -6 -9 0
axis2 c -1 0 -5 -0 -4 1 -11 -2
camel -21 1 -19 -28 -26 1 -23 -32
cassandra -24 1 -34 -30 -40 1 -47 -50
cayenne -3 -0 -27 -5 -0 -10
cxf 8 -0 2 22 3 -0 2 13
derby -0 -0 -1 0 -0 -0 -0 0
hadoop hdfs -1 0 -3 -1 -2 1 -6 -2
harmony -49 1 -50 -58 -34 0 -36 -42
hive -0 1 -1 -2 -2 1 -3 -4
ivy 2 0 1 1 1
log4j 1 -5 -0 -0 1 -8 -1
log4net -3
log4php -1 2 -4 -2 1 -3 -11
lucene -1 -0 -17 -1 -0 -0 -21 -0
mahout -2 1 -3 -3 -1 2 -2 -3
nutch -4 1 -5 -8 -5 2 -3 -16
ode -5 1 -6 -14 -3 1 -7 -10
openejb 1 -0 -17 8 0 -0 -22 4
pluto 1 -0 -2 1 -0 0 -5 -0
solr -8 1 -25 -14 -1 0 -15 -1
wicket 0 -0 -17 2 0 -0 -18 2
xerces2 j 0 -0 4 1 1 -0 3 2

populations. The numbers are rounded into integers and values highlighted
are the ones where the test returned a p-value of < 0.05.

We observe that in terms of code effort, in 17 projects developers showed
a statistically meaningful decrease in code effort while within putative CoGs.
The other projects developers’ change was either statistically insignificant, or
small in magnitude (3 or fewer lines of code). At the same time, code growth
decreases among 10 projects’ developers, but also increases among 2 projects’
developers. Table 11 again shows that these results are rather stable and do
not change drastically with alteration of CoG parameters.

These results are seemingly at variance with the recent results of Xuan and
Filkov [70], where the code growth was found to be positive during collabo-
ration, for groups of size 2. Cross-checking with their results, we see that our
results are in fact not in disagreement. They have studied code growth in 6
ASF projects, 5 of which are present in our current study. These 5 projects
are “ant”, “cxf”, “derby”, “lucene”, “openejb”. What they report in terms of
code growth during pair-wise co-development is compatible with our presented
findings for 2 of those 5 projects as we find that same positive growth in “cxf”
and “openejb”. For the other 3 projects, growth was positive in 2 of them, and
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insignificant in “lucene”. Fig. 1 in their paper shows that the positive growth
in these two projects is much less than the growth in “cxf” and “openejb”. We
note that one of the criteria for their selection of projects to study was to have
a high number of developers, which may have an effect on group collaboration
patterns, and may have contributed to their results and overall conclusion.
Here, our experiments were much more comprehensive and less biased, and
hence, we assert, are more conclusive.

In Table 10 we have presented a number of additional overall characteristics
for all our projects. The Spearman correlation between these characteristics
and code effort shows there is a significant negative correlation between code
effort and a project’s total number of files (−0.57). We also observe significant
correlations between code growth and the number of commits and developers
in a project (0.53, 0.57). These numbers hint at having more developers and
activity in projects correlates positively with higher developer productivity
during collaborations, while having more packages in a project may lower
code effort.

5.4.1 Adjusting to Collaboration

Our results provide compelling evidence for the hypothesis that during group
collaboration developers commit more often, but in smaller amounts (see Ta-
bles 6 and 10).

A plausible explanation is that smaller contributions may decrease the
chances of conflicts when more people are around. We asked developers in our
survey if and how they adjust their working style when collaborating and the
most common response was that they commit more often and in smaller sizes,
thus in agreement with our findings. This is also consistent with the author’s
experience in collaborative development.

While survey participants collectively believe that collaboration increases
productivity, they also admit that collaboration requires extra communication
and coordination (Table 5). Our results, that show collaborative groups being
statistically unfavorable are consistent with this, and are possibly capturing
the hidden costs and overhead of socio-technical collaboration.

Result 4: Effort spent on each package, at each commit, drops dur-
ing group collaboration in most projects, and increases in only a few. In-
crease in code growth is correlated to project’s total number of commits
and developers. Committing more frequently but in smaller chunks is one
of developers’ methods of adjusting to a collaborative environment.

To practitioners, this together with the earlier results, can reafirm the no-
tion that teams take effort to form, maintain, and get the best out of. These
results offer evidence towards collaboration being recognized as coming at a
cost, but is generally beneficial towards lowering developer effort. In other
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words, working in groups has an increased cost, but pays dividends. Thus, the
cost of scaling collaborations should be an important consideration when a de-
veloper joins new projects or teams, as it may ultimately be counterproductive
for larger groups. This of course is a generic issue, very well known in manage-
ment science for centrally managed teams, where dealing with team scalability
and corrections vis-a-vis project management is perhaps more direct [9].

6 Threats to validity

There are a number of threats to our approaches and our conclusions. First and
foremost is the threat to construct validity. our method for recognizing groups
is clearly only a second hand approximation. We argue, that if groups in fact
exist, then our method must capture them, so long as they produce code at
the same time. Clearly, a group of people can do work together which does not
involve all of them coding at the same time. But we do not presume to be able
to identify such groups, only their subsets involved in coding. The non-coding
members of the group are not directly relevant to our study, so our groups
may be only subsets of actual groups. Clearly, intent cannot be established
from trace data, so any results must necessarily be possibly circumstantial.
But by studying group prevalence over a large set of OSS projects, we hope
that there will be sufficient evidence to make our results convincing. While
unmasking user aliases, we used similarity between names and email addresses
as a heuristic for identifying people with multiple accounts. While this is a very
reasonable assumption, there is a slight chance of false positives from people
with identical or highly similar names.

We also recognize several other threats to the internal validity of our work.
We used a survey as a more direct approach of establishing the existence of
groups, but passing of time limited our ability to explicitly ask specifics of
the team members, forcing us to settle for less precise questions and fewer
answers than we wanted. The small number of developers participating in our
survey also limited our ability to infer from the responses. We note that those
responses still greatly agreed on most issues.

Simplifying productivity down to two measures of code growth and effort
is sure to miss some dimensions of productivity, e.g., code churn. On the other
hand, they do capture more information than simple growth, and are a natural
first order approximation measure of energy expended.

We used source code files in each project to identify groups. There are more
file types in each project, such as xml files, some of which we may actually be
subject to group collaboration, but we had to exclude them to remove bias
introduced by files that are not handled by developers, such as “pom.xml”.
The number of these files is, however, limited and statistically much smaller
than the tens of thousands of source code files in the projects.

We acknowledge the threat to external validity of this research, as our
findings are based solely on ASF projects and may be affected by cultural and
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environmental parameters that may limit the applicability of our findings to
other OSS ecosystems such as GitHub.

7 Conclusion

In this paper, we presented an algorithm for tracing group collaboration in
OSS. It allowed us to identify hundres of potential team collaborations from
Apache data and then to study the associations of teams with software de-
velopment metrics. We were able to validate a large fraction of the identified
teams, demonstrating the practical relevance of the algorithm.

Using that algorithm, we addresed a limited set of topics, including how
teamwork associates with measures of productivity. We were able to get sig-
nificant results demonstrating the practical utility of the algorithm in under-
standing team development in OSS. Perhaps the most important conclusion
coming out of this work is that teams larger than 2 members do form and
that we can detect them simply from looking at their commits over time. This
technology can thus enable studies on team formation, effectiveness of teams,
recruiting and training, as well as early identification of tasks that need team
effort. Such studies can lead to results which are more or less expected, but also
to some that may not be, e.g., we found here that effort expended is almost
universally lowered while developers work together, while the same agreement
does not exist for file code growth.

There are several immediate directions for followup research to this work.
Our algorithm is still in a state of development and can arguably be improved
along several dimensions to make it more useful in practice, e.g., fine-tuning
the parameters using data from known team work traces. Adding function-
ality to this algorithm so it considers the actual code being written by team
members, would open additional interesting research avenues into how team
members parcel out sub-tasks and how they integrate them into a whole. Fi-
nally, studying the trade-off between the benefits of collaboration and its costs
and identifying ranges of group sizes lying in the sweet spot could be useful
both from the project and individual perspectives.
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Appendix A. Developer Questionnaire

The questionnaire is sent to each individual through email. Each email starts with a proper
introduction of the authors, and our research. afterwards, they are asked to complete the
form and submit it to us.

ASF Collaborative Development Questionnaire
* Required

How would you describe your involvement in this project?
e.g., project founder, core developer, ...

How frequently did/do you work on this mentioned project? *

Daily
Once per 2-3 days
Once per week
Less than once per week

What are some typical tasks you carried out in this project? Please give a few
examples.
e.g., fixing bugs, implementing a new feature, ...

How do you choose which tasks to work on? Do you choose your own tasks?
How do you prioritize which tasks to work on first?

How long did tasks you worked on typically take, from start to finish? *
If you were part of a bigger task, please answer with the overall task in mind

1-2 days
3-5 days
A week
2 weeks
Other:

When does work by others influence you / your work directly? *

When it is in the same files you are touching at the time; the same packages;
the whole project or something else

The file(s) I am working on
The package(s) I am working on
The whole project
Other:

Which of your tasks do you consider to be more collaborative than the others?
e.g., bug fixes, adding new features, ....
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How many people do collaborative tasks typically involve?

2
3
4
5
6
more

How do you coordinate your work with collaborators on the same task? What
communication channels do you use?
Do you discuss with them prior to task assignment, during task work, or after task comple-
tion?

How do you adjust your working style when collaborating as opposed to during
solitary work, if at all?
e.g.,, by committing less frequently, or by pushing smaller commits more frequently, ...

When is it beneficial and when is it detrimental to collaborate with others on
the same task?

Please tell us how much you agree or disagree with the following sentences *
Strongly
Disagree

Disagree Neutral Agree Strongly
Agree

Working on the project was a
collaborative effort

You actively attempted to “team up”
with others to complete tasks

Collaboration increases productivity

Collaboration increases merge conflicts
and introduces some difficulties

Collaboration requires extra
coordination and communication
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Appendix B. Verification of Data Mining Scripts

Our scripts are based on scripts developed by Bird et al., which we have slighlty modified
to fit our purposes. Both ours and their scripts are available at http://www.gharehyazie.

com/supplementary/teamwork/miningscripts/. As this data gathering step is critical to the
analyses downstream, we proceeded to verify their accuracy. To that end, we randomly se-
lected three months (June 2008, April 2009, and Feburary 2010) and three of our 26 projects
(Abdera, Harmony and Cayenne). We then manually iterated over all of the messages by
those selected projects during those selected time periods. Overall about 1200 messages were
inspected during this process, as follows.

We observed the message senders, subject, timestamp, thread IDs, and body. This in-
formation was then compared to the corresponding entries for the messages in the projects’
mailing list archive available at http://mail-archives.apache.org/mod_mbox/. While al-
most everything was consistent the original archive, two issues were discovered:

1. The timestamp of messages stored in our database were off by a few hours compared
to the archives. Upon further investigation, we identified the issue to be the way we
parse the timezone information. This inconsistency does not affect our results since it
results in a time discrepancy in message timestamps of at most one day and our study
is insensitive to this resolution of time.

2. The last message of each month was not recorded in our database. This resulted in
a difference of 12 messages per project per year between our database and the actual
archives, a difference of 1%.

http://www.gharehyazie.com/supplementary/teamwork/miningscripts/
http://www.gharehyazie.com/supplementary/teamwork/miningscripts/
http://mail-archives.apache.org/mod_mbox/
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